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ABSTRACT

Today, mobile devices (smartphones, tablets, etc.) are widespread and of high importance for their users. Their
performance as well as versatility increases over time. This leads to the opportunity to use such devices for more
specific tasks like image processing in an industrial context. For the analysis of images requirements like image
quality (blur, illumination, etc.) as well as a defined relative position of the object to be inspected are crucial.
Since mobile devices are handheld and used in constantly changing environments the challenge is to fulfill these
requirements. We present an approach to overcome the obstacles and stabilize the image capturing process such
that image analysis becomes significantly improved on mobile devices. Therefore, image processing methods
are combined with sensor fusion concepts. The approach consists of three main parts. First, pose estimation
methods are used to guide a user moving the device to a defined position. Second, the sensors data and the pose
information are combined for relative motion estimation. Finally, the image capturing process is automated. It
is triggered depending on the alignment of the device and the object as well as the image quality that can be
achieved under consideration of motion and environmental effects.
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1. INTRODUCTION

In todays world, mobile devices in form of smartphones and tablets are widespread and of high importance for
their users. They not only enable communication, but also allow for daily planning (calendar, timer, notices,
etc.) as well as use of multimedia contents (music, images, etc.) or games. People rely on their devices and
immerse them into their daily life. Hence, the market of mobile devices is still growing. Over time, versatility
and performance of such devices increase. Accordingly, the number and quality of embedded sensors increase.
This leads to the opportunity of using mobile devices for more specific tasks like image processing for mobile
health1 or in an industrial context, e.g. banknote authentication.2 For the analysis of images, meeting certain
requirements is crucial. On the one hand, a proper image quality (blur, contrast, illumination, etc.) is important,
on the other hand, the device has to be appropriately aligned to the object to be inspected. In order to fulfill
these requirements using a mobile device, some obstacles have to be taken into account. First, the image sensors
are low-cost and prone to a certain amount of image noise. Second, contrary to conventional image processing
applications, a mobile device is handheld and not fixed in its position (cf. Fig. 2a). This leads to motion blur
artifacts. Third, mobile devices are used in constantly changing environments implying that different ambient
illuminations have to be considered. These obstacles have to be overcome to enable a proper image acquisition
in the context of image processing on mobile devices.

We present a new approach for handheld stabilized image acquisition of an arbitrary planar object. Therefore,
methods of object detection and motion estimation are combined with a sensor fusion concept. Our goal is to
guide the user moving the device to a defined position and to automate the image capture process. The latter
is triggered depending on the alignment of the device and the object. Furthermore, an Image Acquisition State
that depends on the current motion of the device is considered for triggering.

The paper is organized as follows: Subsequently to the introduction, the approach is presented in section two,
comprising a description of the methods for pose estimation, the concept for motion estimation, and the sensor
fusion framework. Preliminary results are presented in section four before the paper is concluded in section five.
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Figure 1: Overview of the presented approach.

2. APPROACH

The presented approach combines concepts of image processing and information fusion to enable for automated
and stable image acquisition of planar objects. The particular use case for the application is banknote authen-
tication using mobile devices.2 To authenticate banknotes based on image processing algorithms, the captured
banknote has to be correctly aligned to the camera concerning the distance and rotation. Currently, only a mask
of the object is superimposed with the camera view of the user and has to be manually aligned to the object.
The alignment as well as the subsequent manual triggering of the image acquisition is not an intuitive process
and leads to a miss alignment of the device and the object or effects like motion blur in the resulting image.
Therefore, our goal is to automate the capturing process and design a user-friendly application that guides the
user for stable image acquisition.

The schematic procedure for stable image acquisition is depicted in Fig. 1. Starting point is the mobile device
that delivers a frame (image) stream coming from its embedded camera as well as sensor information coming from
the embedded sensors. Single frames are grabbed from the frame stream and transferred to the pose estimation
process. The pose estimation carries out object detection and computes the 3-dimensional (3D) pose of the
object if it is present in the current frame (cf. Fig. 2). Subsequently, a stabilization is applied that suppresses
counter intuitive pose estimation results in order to give a fluently feeling feedback to the user. The feedback
in this case is the framed object that is displayed to the user (cf. Fig. 2b). The resulting object position in the
actual frame is on the one hand used for motion estimation that predicts the Region of Interest (ROI) of the
object in the next frame and on the other hand a criterion to decide about the triggering for image acquisition.
Additionally, information of embedded sensors that state about the motion of the device are incorporated. A
fusion concept is applied that combines the information of all available sources and generates a single score value
for one proposition, the Image Acquisition State. This is used as second criterion for the decision about image
capturing. If the object is in correct position relative to the device and the Image Acquisition State is in an
appropriate range, the capturing process is automatically triggered. After triggering, an image is captured. The
embedded camera requires some processing time to capture the image. During this time the state of the device
could change, resulting in improper images. To suppress these images the acquisition state is requested again at
the actual acquisition time. Finally, if all requirements are fulfilled, an appropriate photography of the object
is available for subsequent image processing applications. In the following, the individual steps of the approach
are described, starting with the pose estimation.

2.1 Pose Estimation

In the first step the object has to be localized and its position relative to the mobile device has to be estimated
(cf. Fig. 2). Basically our method relies on a marker-less feature detection approach that enables for robust
object detection. Robustness in this case describes the invariance against changes in scale, rotation as well as
contrast. The general procedure is as follows: At runtime, feature points are extracted from the current gray
scale frame. Feature points are distinctive points of the image like corners or blobs. These points are described
by their surrounding pixels. Information about the intensity distribution around the feature points are extracted,
resulting in a descriptor for each. Subsequently, the descriptors are matched to the reference descriptors that are
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Figure 2: 3D pose estimation on mobile devices. (a) The general set-up for the 3D-pose estimation. (b)
Example for an estimated 3D-pose. The object is framed by the projection of the estimated 3D-contour of
the object.

generated from one or more reference images during a training phase. For matching a similarity measure is used
that depends on the representation of the descriptor (binary, numerical, etc.). With the resulting correspondences
of feature points the 3-dimensional (3D) pose of the reference object in the current frame is computed comprising
the information of the relative position of the object to the mobile device (cf. Fig. 2b).

In this case the approach presented by Taylor, Rosten and Drummond3 is used because it fulfills the require-
ment of robustness. Planar objects can be detected for different scales, rotations and contrast. As mentioned
before, this is crucial since mobile devices are used in varying environments. In addition, low computational
efforts are required at runtime, what is especially important when using mobile devices. The approach consists of
a training phase that describes the object to be detected, here a planar banknote. Initially, a reference image of
the object has to be available. This is used to artificially generate a set of training images by applying geometric
transformations for rotation, scaling, and sheering as well as image blurring.3 The training images are arranged
in different viewpoint bins3 that differ in small changes in scale and rotation. The reference image is reduced in
scale s times and rotated around the image center r times. Thus, b = s · r viewpoint bins are generated. In each
viewpoint bin further transformations and blurring are applied, resulting in a set of training images for each
bin.3 The large set of training images is required in order to fulfill the claim of robustness. Once the training
images are generated, the training procedure is applied. It describes every viewpoint bin separately. Therefore,
features are extracted in every image using the feature detector referred to as features from accelerated segment
test (FAST).4 The m most frequently and thus most repeatable features of one viewpoint bin are described by
statistical analysis and quantized to binary values.3 Thus, the descriptor is of binary representation. At runtime
features are detected from the actual frame using FAST and descriptors equivalent to the training descriptors
are extracted. Therefore, the matching is carried out using logic operations and is of low computational cost.3

If a certain amount of corresponding point pairs is matched, the approach presented by Lepetit, Moreno-
Noguer and Fua5 is used to estimate a (3 × 3) rotation matrix and (3 × 1) translation vector. Rotation and
translation define a 3D transformation of the reference object to the real object position relative to the device
(cf. Fig. 2a). We apply the transformation to the reference object boundaries to receive a 3D contour representing
the real object position. This contour is projected into the 2-dimensional (2D) camera frame to give the user a
visual feedback (Fig. 2b). Note that the object is detected even if object and background have similar texture
and contrast (cf. Fig. 2a). Therefore, our approach is applicable to a wide range of planar objects on arbitrary
backgrounds.

As already mentioned, mobile devices offer limited computational power compared to standard desktop PC’s
implying that computational efforts are an important aspect for the usability of applications. The goal is to fulfill
real-time requirements what in case of object detection and tracking means that the applications feels fluently
to the user. Due to the limited computational power, we cannot evaluated every frame. Instead, at runtime, the
detection thread grabs a frame from the preview frame stream and converts it into gray scale. Consequently, the
pose estimation is applied. When it is done, the pose and the object contour are updated, the detection thread
grabs a new frame, and the pose estimation is executed again.
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2.2 Pose Stabilization and Motion Estimation

In order to stabilize the object position and to bear down the impact of erroneous poses, the estimated object
corners are applied to a Kalman filter .6 Next, the filtered object corners are applied to an acceleration model
to extrapolate the object position. The derived suspect position of the object in the next frame allows for the
definition of a ROI, i.e. a detail of the image where the object is suspected to be. Since only the ROI needs to
be evaluated, the computational effort of the pose estimation process is reduced. Further more, the prediction
of the ROI enables a more robust tracking of moving objects.

Position Stabilization using a Kalman Filter The Kalman filter is set of mathematical equations to
estimate the state of a linear, time-discrete system from noisy measurement data.7 For example, the linear
state of a moving 2D point pk = (xk, yk) is described by its coordinates and their derivatives, e.g. state xk =
(xk, yk, ẋk, ẏk). The filter estimates the optimal states in case of normally distributed noise, i.e. the estimated
states have the smallest error to the real states.8 Furthermore, the filter works recursive, which allows for online
application.7

Once the filter is initialized with the first measurement, the filter process at each time-step k consists of a
Prediction Step and a Correction Step.8 In the first step, a linear transition model is used to predict the next
state ahead based on all previous measurements. In the Correction Step, if a new measurement is available, the
predicted state is corrected with the weighted measurement. The weight depends on the differences between
the predictions and measurements in the previous iterations. At each time-step k the filter provides two states,
the current state xk and the predicted state x̂k.7 The current state xk refers to the position in the evaluated
frame, while the predicted state x̂k refers to the predicted position at the next time step k + 1 . However, due
to the underlying linear filter model, the predicted position has a certain latency when the moving direction
and velocity changes abruptly. This cannot be avoided at all when dealing with handheld device and/or object.
Thus, the Kalman filter states are not suitable to predict a ROI. Instead, the Constant Acceleration Model is
implemented.

Motion Estimation using a Constant Acceleration Model Based on the stabilized object corners, we
compute the objects velocity and acceleration to predict its position in future frames, which is used to compute
a ROI to seek for the object. The position is predicted using the Constant Acceleration Model :

a(t) = r̈(t) = a0 (const)

v(t) =

∫
a(t) = ṙ(t) = v0 + a0 · t

r(t) =

∫
v(t) = r0 + v0 · t+

1

2
· a0 · t2

The model assumes a constant acceleration a(t) = const, which corresponds to the second derivative of the
location r(t) at time t. Analogues, the velocity v(t) is the integral of a(t) over t and corresponds to the first
derivative of the location. To apply this model to discrete time data, the continuous derivatives have to be
approximated with discrete ones.

Let Pk be the set of stabilized object corners {pi,k}, i = 0 . . . 3 at time tk, i.e. the k-th Kalman filter state.
The velocity vi,k and the acceleration ai,k can be approximated by the first and second discrete derivatives:

vi,k =
pi,k+1 − pk,i

tk+1 − tk
, at time tvk =

tk + tk+1

2

ai,k =
vi,k+1 − vk,i

tvk+1 − tvk
, at time tak =

tk + 2 · tk+1 + tk+2

4

Although the stabilized corners pi,k are used to calculate vi,k and ai,k, the discrete derivatives are still prone
to noise and local extrema through fitful movement. However, we assume that the velocity and acceleration are
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constant for a certain time interval and do not change rapidly. Therefore, we also apply each vi,k and ai,k to
a Kalman filter for stabilization. Consequently, the predicted position p̂i(t) of a point pi,k+2 is extrapolated at
time t using the following equation:

p̂i(t) = pi,k+2 + vi,k+1 · (t− tk+2) +
1

2
· ai,k · (t− tk+2)2

Note, that we assume the velocity at tk+2 is still the same velocity vk+1 derived at tvk. Analogous goes for the
acceleration.

The described extrapolation process is used in two ways in our approach: First, in case of a missed frame,
i.e. a frame in which the object could not be detected, the object corners are extrapolated in order to provide a
smooth moving object contour to the user. Second, the center of the object contour is computed and applied to
the acceleration model. The ROI center is then extrapolated to that time t, when the next frame for evaluation
is grabbed. The center point is the weighted average of the object corners and thus even more reliable than a
single corner point. The size of the ROI corresponds to a bounding box around the latest object corners Pk+2.

2.3 Sensor Fusion

Mobile devices, in this case of-the-shelf smartphones, are equipped with sensors like the accelerometer or gyro-
scope that deliver information about the motion of the device (cf. Fig. 2a). Therefore, we apply a sensor fusion
concept and combine the available information in order to automate the triggering for image acquisition. For
example, if the accelerometer delivers continuously and rapidly changing values this implies that a capture with-
out motion blur is not possible. To integrate this kind of knowledge into the application, sensor information are
aggregated to a final score value. The score value is referred to as Image Acquisition State. The state describes
the current motion of the device and is used to prevent motion blur effects in captured images. The general
structure of the fusion concept is depicted in Fig. 3. A set of n sensors Si, i = {1, . . . , n} is incorporated to
compute the Image Acquisition State. First, sensor data is captured and features are extracted. Subsequently,
the fuzzified balanced two-layer conflict solving (µBalTLCS)9,10 is applied to fuse available information. The ap-
proach comprises methods of Evidence Theory11 and is related to human decision making.12 µBalTLCS enables
to aggregate information of different sources that measure different physical units, resulting in an overall score
value for one proposition (opinion, statement), here the Image Acquisition State. In the following, the procedure
is explained in detail.

Acquisition,3Synchronisation,3
Feature3Extraction,3Transformation

μBalTLCS3Fusion

Image3Acquisition3State

S1 S2 S3 S4 Sn
...

...

Figure 3: The Fusion-Framework.

In order to state about the current motion of the device three senors are incorporated, namely the accelerome-
ter, the gyroscope, and the magnetometer. The accelerometer measures the acceleration in x-, y-, and z-direction.
The gyroscope measures the rotation around the three axis and the magnetometer states about magnetic field
for the tree axis. The first derivative of the sensor signals describes their changes over time. Since the capturing
process should only be triggered if no significant motion is present (constant sensor signals), the first derivative
is approximated from the last two sensor observations and used as feature for the fusion process. First, in order
to represent available sensor information, the modified fuzzy pattern classifier (MFPC) training is applied.13
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Figure 4: The training process for fuzzy membership functions. (a) Collected feature values xi for the sensor
Si. (b) The generated fuzzy membership function +µ(xi) and its complement −µ(xi). θi represents a specific
feature value.

The training maps the information of every sensor Si to a unit-less space [0, 1], resulting in fuzzy membership
functions14 µSi : xi → [0, 1] for each. A membership function describes the degree of membership of a feature
to a defined class. For the Image Acquisition State only two classes are required. Either an image should be
captured or not. The class that supports the Image Acquisition State is referred to as positive capture condition
+C and the complement, the class that do not support the Image Acquisition State, is referred to as negative
capture condition −C. Therefore, the proposition set is P = {+C,−C}. Fig. 4 shows the training process for one
sensor Si. Feature values are collected (cf. Fig. 4a) and used to generate the fuzzy membership function for the
sensor (cf. Fig. 4b). The membership function for the positive capture condition is denoted by +µ(xi) and for
the negative capture condition by −µ(xi) = 1−+µ(xi) (cf. Fig. 4b).

At runtime, the features xi are extracted for every sensor and fuzzy membership values µSi
(xi) are computed.

The membership values can be directly mapped to evidential masses11 mi(θi) for specific feature values θi (cf.
Fig. 4b).9,10 Thus, masses for single feature values are obtained as follows10,15

+mi(θi) = +µSi
(θi),

−mi(θi) = −µSi
(θi),

−mi(θi) = 1− +µSi
(θi).

The variable +mi(θi) is the mass assigned to the positive capture condition (+C) and −mi(θi) is the mass assigned
to the negative capture condition (−C). In order to aggregate the information and compute the Image Acquisition
State, the balanced two-layer conflict solving (BalTLCS)9 concept is used. It aggregates masses by additively
combining two separate parts, namely the non-conflicting and the conflicting part.9 The combination of this
aggregation method and masses derived from fuzzy memberships is referred to as µBalTLCS.9 In the case under
consideration the combined mass for the positive capture condition m(+C) is computed, which represents the
Image Acquisition State. For the non-conflicting part all sensor combinations that support the Image Acquisition
State have to be considered. That are all pairwise combinations of masses +mi(θi) and +mj(θj). Having only
the two propositions +C and −C, the non-conflicting mass mnc(

+C) is computed by the following equation:15

mnc(
+C) =

2

n · (n− 1)

n−1∑
i=1

n∑
j=i+1

+mi(θi) · +mj(θj).

Here, only n sensor information of the mobile device are used for fusion but also experts knowledge or other
information sources could be incorporated. The conflicting mass for the proposition +C is15

mc(
+C) = k′cm ·

1

n

n∑
i=1

+mi(θi), with k′cm =
2

n

n∑
i=1

+mi(θi)− 2 ·mnc(
+C).

The conflicting coefficient k′cm describes the conflict between every two information sources.9 Finally, the non-
conflicting and the conflicting masses are additively combined to obtain the fused mass for the positive capture
condition (+C), which represents the Image Acquisition State:15

m(+C) = mnc(
+C) +mc(

+C).
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The maximum value m(+C) = 1 states that under current circumstances the capturing process can be triggered
(the device is in resting position) while a value m(+C) = 0 contains the information that the capturing process
should not be triggered (the device is in motion). This is combined with the current position of the object to
decide about image capturing.

3. PRELIMINARY RESULTS

In this section the findings of the approach are discussed. We have implemented the acquisition procedure
(cf. Fig. 1) for the Android operating system,16 using the Samsung Galaxy S417 for testing. Furthermore, the
OpenCV library was incorporated.18 In the following, the advantages resulting from our approach of automated
and stable image acquisition as well as problems and optimization capabilities are outlined.

As mentioned at the beginning, the use case for the presented image acquisition concept is banknote authen-
tication using mobile devices.2 To make a statement on the authenticity of a banknote, features are extracted
from a photography of a banknote, which subsequently are used for classification. To fulfill the requirement of
consistent and reproducible results the object has to be captured under defined circumstances. One significant
factor is the alignment of the mobile device and the object to be analyzed. Currently, the alignment as well as
the triggering for image acquisition have to be performed manually by the user. The user is not capable for an
exact and reproducible alignment such that captured images differ in scale and rotation and exhibit perspective
distortions, caused by a non-parallel orientation of the device. In addition, while pressing the capture button,
the device shakes slightly what leads to motion blurred images. These do strongly effect the subsequent authen-
tication algorithms. Our approach overcomes this obstacles by supporting the user moving the device in correct
position relative to the object and an automated triggering for image acquisition, depending on the motion of
the device. This is not only useful in terms of banknote authentication but can be applied to other mobile image
processing applications.

The resulting advantages of an automated capturing process are versatile. One benefit is the significant
improvement of user-friendliness to carry out image acquisition of a specific object. If the object is present in
the cameras field of view, a continuous feedback in form of a framed object is given (cf. Fig. 2b), i.e. the user is
aware of the ROI that has to be captured. In addition, the three Euler Angles (yaw, pitch and roll) representing
the objects orientation are displayed. This simplifies and accelerates the complete procedure for handheld image
acquisition. Another improvement for user-friendliness is the automated decision making for triggering the
capturing process. Summarized, the boundary conditions for stable and consistent image acquisition become
fulfilled with minimum expense for the user.

Another improvement is concerning the image processing applications that are executed after image acquisi-
tion. Our approach enables to capture reproducible images with respect to the dimension and orientation of the
object to be inspected. Therefore, the downstream algorithms obtain input images of consistent extent that only
contain the required object information. For testing and to show the capabilities of our approach, we defined
a target position for the object (cf. Fig. 4a). This is not a requirement since the general goal is to capture an
image containing the complete object in a specific distance without an offset of rotation between the x- and y-
and z-axis relative to the device (parallel alignment). Therefore, the translational offset is not important for the
subsequent object analysis. The results are depicted in Fig. 5, with respect to banknote authentication. The
banknote (here a specimen) has to be completely visible in the camera view without geometric distortion caused
by a misalignment of the mobile device. In Fig. 5b - d images captured using the presented approach are depicted.
The black frame shows the target position for the object. In all three images the specimen nearly fits into the
frame so that the subsequent authentication process can be applied to object images of consistent dimension and
content. Note, the approach is capable to detect and capture an image of the object for varying backgrounds.
In addition, non of the depicted images shows motion blur effects. This is because of the incorporated sensor
fusion. Images are only captured if the Image Acquisition State is above a certain threshold (the device is in
resting position). For that reason blurred images are avoided.

Besides the benefits, also problems are present in our approach. One is apparent from Fig. 5c. The object
does not entirely fit into the frame because of a translational offset. This is caused by the processing time the
device needs to capture the image. The capturing process can not be influenced since it is an internal and non-
accessible Android-routine. Due to the time-frame between the trigger decision and the actual capturing, the
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(a) (b)

(c) (d)
Figure 5: Resulting images of the presented acquisition concept. (a) The target position for the object in the
camera view. (b) - (d) Images captured using the presented approach.

user possibly moves the device slightly, resulting in a offset for the object position or motion blur. In addition,
the Image Acquisition State is currently not sensitive to constant velocity of the device because the available
sensor information only states about the acceleration of the device that tends to zero for that case. Therefore,
the capturing is may triggered while the device is moving, what also results in translational offset or motion blur.

Another drawback is the focusing. It is executed during the capturing process, also handled by an internal
Android-routine. Different focus modes exist like a continues adaption of the focus while the application is
running or an autofocus-mode that focuses on a specific area of the image after image acquisition is triggered.
We have observed that the focusing is not reliable and consistent. Thus, captured images might be blurred. This
case we cannot avoid, since it is part of the devices firmware.

As mentioned in Section 2.2, the Kalman filter is based on a linear model. Consequently, when the moving
direction of the object changes abruptly, the filtered pose has a certain latency and tend to overshoot. However,
if the relative velocity between the device and the object is nearly constant or small, these effects are small too
and the Kalman filter enables a smooth object tracking.

The complete process takes in average 72 ms per frame, i.e. the object position is updated 13.9 times per
second, while the camera preview runs independently at 30 frames per second. The detailed times are given in
Table 1.

4. CONCLUSION AND OUTLOOK

4.1 Conclusion

We have presented new approach for stable image acquisition with mobile devices in the context of image
processing applications. Arbitrary planar objects in a predefined position can be captured automatically with
minimum effort for the user. Thus, it is applicable to a broad field of applications. By combining methods for
pose and motion estimation the user is guided to move the device in correct position to the object. Because
of the robust object detection approach by Taylor, Rosten and Drummond3 the object pose can be estimated
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Process Time [ms]

Grabbing frame from the Android camera interface 8
Color convert 10
Scaling 4
Feature detection, description and matching 12
Pose estimation 9
Kalman filtering 5
Miscellaneous 24

Total 72

Table 1: Average computation times per frame

in different environments (illumination, etc.) and for different object backgrounds. This is crucial since mobile
devices are used in versatile environments. Additionally, pose stabilization and motion estimation are applied
that enables for a fluently feeling feedback in form of a framed object to the user.

Furthermore, the embedded sensors of the device are incorporated to state about its current motion and
support the image acquisition. The latter is triggered automatically depending on the alignment of the device
and the object as well as the Image Acquisition State, i.e. the aggregated sensor information. Since mobile
devices are handheld, this is crucial and improves the acquisition procedure significantly. Effects like motion
blur are suppressed and images of consistent dimension and content are captured. Therefore, subsequent image
processing applications (e.g. banknote authentication using mobile devices) receive an appropriate input for
further analysis.

4.2 Outlook

As mentioned in Sec. 3, problems concerning the duration of the internal capturing process are present, resulting
in blurred images or an offset for the object position. Additionally, the Image Acquisition State is not sensitive
to constant motion of the device. In future work, concepts to overcome this problems will be investigated. The
goal is to stabilize and improve the acquisition procedure further and capture consistent images in terms of image
processing applications. Moreover, the integration of image quality metrics will be examined. On the one hand,
to extend the fusion framework, on the other hand, to analyze images directly after capturing an reject those
that do not fulfill the requirements of the application.
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